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Numerical bifurcation techniques were developed for studying

the multiplicity, stability, and oscillatory dynamics of the non-

.
A b e Aetmn

adiabatic tubular reactor with a single A - B reaction. The |

techniques illustrate the existence of one, three, five, or seven

o

steady states and bifurcating periodic solutions. We present
numerical procedures for computing the Hopf bifurcation formulas »

which can determine the stability and location of the oscillation

[TV USUI

without integrating the parabolic partial differential equations. {
The combination of our Hopf techniques with steady state bifurca- j
tion methods enables us to determine all possible steady and stable ;
oscillatory solutions exhibited by distributed parameter models

such as the tubular reactor.
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SIGNIFICANCE AND EXPLANATION

Numerical methods are developed for the investigation of Hopf bifurcation
(bifurcation to periodic solutions) in mathematical models which consist of
parabolic partial differential equations whose time independent solutions
are defined by systems of two roint boundary value problems. The combination

of our Hopf technigues witi tie steady state bifurcation methods of Keller

itle steady state and periodic solutions

enables us to determine all
exhipited by these distributed rarameter models. The utility of our numerical < 4

/
procedure lies in their generality and potential applicability. They can be ;
used to study the multiplicity, stability, and oscillatory phenomena exhibited
by reaction-diffusion systems in combustion, chemical reactor theor; and mathe- L
matical biology. {g

3

We apply these technigues to a model of the tubular reactor with an

exothermic reaction. The reactor is found to exhibit broad regions of multiple
steady states and periodic solutions which can be conveniently presented on
response curves to illustrate the dynamic capabilities of this reactor. We i
discuss the effects of the solutions on reactor operation, and the effects of ‘q
shiar; transitions or jumps between the steady states and oscillatory states on

reactor dynamics.  Many of the above results have not been reported in the

carlier studies of the tubular reactor or in the more exhaustive studies of F

ti.e continuously stirred tank reactor. o

The responsibility for the wording and views expressed in this descriptive
summary Lien with MRC, and not with the authors of this report.




WUMERICAL HOPF BIFURCATION TECHNIQUES
AND THE DYNAMICS OF THE TUBULAR REACTOR !MODEL
Robert F. Heilnemann and Aubrey B. Poore
INTRODUCTION
The number of theoretical and experimental investigations of multiplicity,
stability, and sensitivity of reaction-diffusion systems over the past two

decades has been enormous. Much of this research has centered around heat

and mass transfer coupled with chemical reaction and has generally been
motivated by the design and operation of industrial chemical reactors. The
most widely studied reactor type has been the continuously stirred tank reactor
(CSTR) since the relevant mathematics are comparatively tractable, and studies
of the CSTR provide a foundation for the understanding of more complex reactors.
Poore [l] and Uppal et al. [2,3] have presented an important and thorough con-
sideration of the single, first-order exothermic reaction in the CSTR. They
concisely classified all possible patterns of multiple steady and periodic
states and pieced together a myriad of results presented in earlier papers.

The Hopf bifurcation techniques presented by Poore and Uppal et al, were com-

pletely general for time~dependent ordinary differential equations and have been
applied to other systems exhibiting oscillatory phenomena [4]. Such systems
included those whose mathematical models consist of parabolic partial differ- 1

ential equations which can be judiciously simplified to ordinary differential

equations [5]. These simplifications have been advantageous since Hopf bifur-
cation techniques were not available for distributed parameter models. The
major objective of the present work is to fill this void by presenting the

Hopf formulas for these complex systems. ¥

Our numerical techniques are based entirely on the time-independent

.

problem and yield the relevent bifurcation information such as the direction

and stability of the oscillatory solution. Furthermore, the periodic orbit

Sponsored by the United States Army under Contract No. DAAG29~80-C-0041,




can be computed without time integration from an asymptotic formula for the

orbit. These methods are quite general and can be applied to systems of 1
|
parabolic partial differential equations whose time-independent solutions are i
defined by a two-point boundary value problem.
We illustrate the utility of our numerical techniques by applying them to
the model of the nonadiabatic tubular reactor. Because of its fundamental
importance, this reactor has been studied with only slightly less fervor than |

the CSTR. The formidable body of literature concerned with the problem includes

the extensive work of Amundson et al. [5 - 15], Hlavecek et al. [16 - 19], and °

McGowin and Perlmutter ([20]. Many of the results presented in these works are

summarized and explained in two excellent reviews by Schmitz ([21] and varma and
Aris [22]. These earlier papers have firmly established the existence of one,
three, or five steady states and also have illustrated sustained oscillations.

However, a complete understanding of the oscillatory dynamics is still largely

an untouached problem.
Two recent papers concerning the multiplicity of the nornadiabatic tubular i
reactor should be mentioned at this point. Kapilla and Poore [23] have completely
clansified the structure of the multiple steady states for all possible para- 1
mefers using large activation energy asymptotics and have established the exist-~
¢rnae of two additional solutions not seen in previous works. We [24] have con-

firmed and extended this classification by applving the steady state bifurcation

techniques of Keller to the problem [25]. The effect of a wide range of finite

activation energies has been examined and has shown the existence of one, three,

five and seven solutions., Following presentation of the mathematical model of the

reactor and our numerical procedures, we illustrate Hopf bifurcation results for

multiplicity jatterns exhibiting from one to seven steady states.




MATHEMATICAL MODEL

The equations describing the conservation of reactant A and energy for
the nonadiabatic tubular reactor with axial mixing appear below in dimension-

less form;

4
.2
y oL 3y Sy Y=y/4
RES Pe 2 Js Dy e (1
m J3s
S L A (2)
31 Pe 352 3s & Pt y € -

The boundary and initial conditions are:

. Sy _ - - ¥
4 3% Pem(y 1) at s 0, 1>0
(3)
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Lo at s=1, 1>0 (4) ’

Js ds !

= = } t T = .
Y Yin ' 3 ein a r 0 (5)
In writing these equations, we have defined the following dimensionless

quantities,

it

y = c/c 8 = T/T N

} 0 0
{_ s = X/L [ = tv/L
Pem = vL/De Peh = pvaL/ke
B = AHCO/“CpTO 3= UPL/avpCp [-
D = Ae 'L/v y = E/RT, . ﬁ

The above model describes an exothermic A * B reaction occurring in a homoge-

neous tube under the assumptions that the velocity profile is flat with constant

velocity v 3 the variables y and ¢ depend only on one space dimension and

time; the diffusion of reactant A  is governed by Fick's Law with an offective

Aiffusivity, D( ; heat conduction is described by tourier's Law with an cffective




thermal conductivity, ke ; the heat loss at any point is proportional to
(6 - 60) ; and the reaction rate is describable by an Arrhenius expression.
The dimensional predecessors of the above equations and the applica-

bility of this formulation are discussed in detail in the two review articles

and in the earlier reactor papers.
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NUMERICAL METHODS

We now present the numerical techniques for generating the steady state
response curves and the Hopf bifurcation information for systems whose mathe-
matical description is given by a distributed parameter model. The coupling
of these methods enables us to systematically locate all the possible steady
and periodic states exhibited by these systems. We begin with a discussion
of the general forms of the equations that we are capable of treating.

Many of the distributed parameter models in chemical reactor theory can

be written as a system of parabolic partial differential equations of the form
2 A

Ju Ly Su . ‘
X = Aw) >+ f (u, U v ¥
ax }A
G,(u(a), u_(a),w) =0 (6)
¢ X

G _(u(b), u (b),u) 0 fl
r X '
where u may represent, for example, the concentration and temperature in the !
reactor. G, and Gr denote the left and right boundary conditions (possibly
nonlinear) and u is the bifurcation parameter. The function f may depend

nonlinearly on u, U and 1 and may contain the space variable x eoxplic-

itly but not the time variable t . For brevity we write this system as

du

I F(u,n) , G(u,u) =0 . (7)
The corresponding two-point boundary value problem is denoted by ]
F(v,p) = 0 , G(v,u) = 0. (8) |
Steady State ﬁumerical Techniques
The steady state problem (8) was solved by combining Keller's modification i

of the Fuler-Newton continuation method [25] with de Boor and Wiess' splince
collocation code [26] and a fourth-order finite difference scheme duc to Stepleman

[27]. Both the collocation and finite difference methods performed quite well

with the collocation technique capable of higher accuracy.

The objective of the steady state methods is to compute the solution v

of equation (8) as the parameter 1 assumes all its possible values. The




Fuler-Newton continuation method can be used to solve this problem with Euler's

method (9) serving as a predictor for Newton's method (10)

vO(L + gu) = viy) +5u93é%L (9)
L o L . ‘
VTG = v (ki) - Fvl(vl(u+5u),u+5p)F(vl(u+5L),b+0u). (10)

However, the technique fails near transition between steady states since the
Jacobian matrix, Fv, cannot be inverted near singularities such as limit or bi-
furcation points,

Keller has modified the above method by imposing an additional normalization
on the solution which enables entire solution branches to be traced, skipping
over any singular points, The imposition of this constraint allows the specifi-
cation of a new parameter, s , which replaces i as the continuation parameter
in the Euler-Newton technique. The reparameterized problem becomes

Pi(x,s) = 0 (1)
where
x(s) = (v(s),i1is)) (12)

and
f

)

F(v(s), i(s)) )
P(x(s),s) = g
J

i
l
| Nlvis), s.(s),s)

It is convenient to choose the normalization N(v,.,s) so that s approximates
thie arc-length of the solution branch for some parameter .. - (0,1)
2 ' 2 2
N(v,s) = dlv(s) = vis T+ (1= fuls) - ;.(so)] - (s = s)%. (13)
when the Euler-Newton technique is applied to (11}, computational diffi-
czlties near singularities are eliminated since the Jacobian matrix remains non-
singular near such points,

These techniques and an algorithm for their implementation are presented

in detail by Keller [25] and have previously been applied to laminar flame problems
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[28-30] and catalysts problems [31] which exhibit multiple steady states. There-
fore, we forego a discussion of the exact computational procedure.

Hopf Bifurcation Formalism

We use the term formalism here since the presentation will be stripped of

the technical mathematical assumptions. A proper mathematical framework can be

found in the works of Crandall and Rabinowitz [32) and Ioos and Joseph [33].
Our work follows closely the presentation in the latter paper, though modified
somewhat to account for the nonzero steady state problem and the form of the

model equations (7). Since this bifurcation theory is most effectively used

in a study of the dynamics associated with an exchange of stability, we begin
with a brief discussion of steady state stability.

The stability of time~independent solutions can in principle be resolved by
examining the eigenvalues of the linearized boundary value problem. If the
eigenvalues all have negative real parts, the steady state is stable; whereas, if
an eigenvalue has a positive real part, the solution is unstable. Exceptions to
this principle occur when the linearized problem has a zero eigenvalue or a pair
of complex conjugate, purely imaginary eigenvalues. In the current reactor
problem, a zero eigenvalue gives rise to a limit point bifurcation (a point of
vertical tangency) on the response curves. The bifurcation of a periodic

solution (Hopf bifurcation} occurs when a pair of complex conjugate eigenvalues

2(.) and o(.) become purely imaginary. We assume that this crossing of the
imaginary axis occurs at iy SO that 0(“0) = +imo with o positive., It is !
also assumed that Re oy(uo) # 0 where o, = de/du. This ensures a strict

crossing of the axis and is nearly always satisfied in thesc problems.

L L




When the Hopf point is accompanied by an exchange of stability, different

types of periodic phenomena may be encountered., 1If the periodic orbit is
stable, a small amplitude oscillation is observed near the Hopf point, but if
the orbit is unstable, the solution will jump to either a large amplitude,
stable oscillation or to another stable steady state, Examination of the orbit
stability near the Hopf points suggests a systematic procedure for locating the
stable oscillations in the reactor.

To present the Hopf bifurcation formulas, we linearize the boundary value

problem and write it as

Lw=0, Gv(v“,L)w) =0 (14)
where

Lw= Fv(v“,ulw) = g%F(vu + &w,u) Is=o
and

G, (v',ulw) = 2 Gv" + swoad | . .

v a8 §=0

The essential requirements for Hopf bifurcation without their technical assump-

tions may be summarized as follows., Assume iiwo are simple eigenvalues of L ,

that niwo is not an eigenvalue for n = 0,2,3,..., and that the real part of

Ny (uo) is nonzero. Then cne can construct a bifurcating periodic solution of (7)

3y
M

with frequency w(g) via a perturbational expansion which can be shown to take

the form [34]

u .

ulx,t) = v 0. 2« Re{LO e'®}
u
2 0
£ dv 2is 2
+ 3 {w1 oy gt 2 Re{wze P} o+ 0(e7) (15)

2 2

u=u0+‘7 L, + 00D (16)
2

Wi = g+ ey b 0(e?) (17)
t = w(e)s (18)
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¢ 1s an auxiliary parameter representing the amplitude of the orbit closc to

the Hopf point. The vector function ¢ is the eigenvector correspondinc to

0

the eigenvalue +i. _; wl and w2 are solutions of certain linear nonhomo-

geneous boundary value problems discussed in the next section. We note that

yields the sign of . - . for ¢ sufficiently small and

tl i
he sign of 0

Ho

therefore determines the direction of bifurcation. Similarly, “s determines
the change in the frequency of the bifurcating solution. The perturbational
expansion (15) provides a good approximation to the periodic solution for
computational purposes.

The stability of the bifurcating oscillation can be based on a study of the
Floquet exponents as discussed by Iooss and Joseph [34]). The essential result
is that the periodic sclution will be locally stable near the bifurcation point

if the eigenvalues of L , other than :iuO , have negative real parts and if
"o
“y ke JL(EO) is positive.

The relevant bifurcation information can be extracted if ._ , .., and

<

a (po) are computed. The algorithm for computing each of these is presented

next.

An Algorithm for the Hopf Bifurcation Formulas.

The nonlinear two-point boundary value problem

5 M
F(v ,u) =0, G(v ,u) =0 (19)
must first be solved at a point My where the linearized problem (14) has a iair
of purely imaginary eigenvalues timo . Thus, the Hopf point is located Ly finding
a root “o of Re o(u). This is accomplished by using the Q2 algorithm to com-
pute the eigenvalues at each point along the steady state response curves and then
employing the bisection or secant method to locate UO .
* . * UO |
Let L denote the adjoint differential equation, and Gv(v '“04.)’ the

u
O *
adjoint boundary conditions, The eigenvectors CO and co are then computed

from the eigenvalue problems

e R

Y
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L

‘ : 0

' C = W o ; d = »

. LFO ‘-.O l»~o 50 r GV(V JLOIL,O) O H (20)
; * * . * * Lo l *) (21)
| LLO o = Thegbp SV ekplig) =0

These eigenvectors are then normalized by requiring

*
(;0, go y =1 and (;0, CO > =1, (22)
Here we have introduced the complex L2 inner product
b -
(v, = [ v pax (23)
a

where -, * 5 denotes the dot product of the vector functions % and ¢ .

A sequence of three linear nonhomogeneous boundary value problems must next

be solved. These are

=9 u
dv 0
LLm . -FL(V 'LO)
v
. (24)
L
- 0 L
0 dv
Gv(v ol T ) —G_“(V ,LO)
L w. = =2F (V;‘O L.t )
S T T v mpicpt Sy
. (25)
G (VPO L iw.) = =2G (vy Loz 2 )
oVorgiYy v Mottt
0
(LLO - 21w Dw, = =F_ (v ,uolcolco)
(26)
L M
O t O !
Gy (v augiwy) = =G v g8 8g)

The derivatives Fvv and GVV appearing in the above problems are computed by

the rule L
,2F y
' g r i .
FVV(VH;UIQI») = o (v + 2
71772

4

A I B B (27)
2 61—62—0

with these computations complete, we now compute ou(uo), Moo and Wy from

u
u 0 H
0 dv 0 * ik
GL(UO) = (‘FVV(V 'UO{EO' '—dr) + FVLI(V 'HOICO) ICO ) (28)

and

-




e

u

. 0 - *
J =y v LYY = - [ :
L l\..z + MZGL(VO)I (FV (v 'UOICO’CO' So)rl;o )

b‘o "
- (FVV(V ’hO)CO’wl)'CO ) (29)

UO - *
- (FW(V ,uo}go,wz),co) .

The first author evaluated the above expressions by using the Stepleman finite

difference scheme to solve equations (24-26) and using Simpson's rule to numerically

-

integrate the inner products. The second author solved the boundary value problems

with the de Boor and Weiss' collocation code and integrated the inner products via
Gauss-Lobatto quadrature. Both methods worked well and yielded quite comparable

results for oh(uo), u and

2 (A program for the Hopf computations for the
L

5
general problem (6) will be available from the second author.)

We note that for computations where numerical sensitivity was observed, the

sensitivity-could be eliminated by more accurate computations of the steady state
TR

. 0 . *
solution v , the eigenvectors and [

0! and the parameter value u at

%o 0

which Re o(uo) = 0 . This sensitivity is not removed by increasing the accuracy
of the Mg calculation for a specific discretization as in the case for ordinary
differential equations. Some obvious tests for accuracy are an orthogonality

*

* -
relation for %o and Lo (CO’CO ) =0 ; the size of Re o(uo); and perhaps

more importantly, comparisons of the eigenvalues of the linearized problem (14)

and its adjoint,

i
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RESPONSE CURVES

In this section, we present some of the more interesting results obtained
by using the above numerical techniques to study the dynamics of the tubular
reactor which arise from varying the DamkBhler number. It is to be emphasized
that this is not a complete cataloging of the dynamic capabilities of the reactor
but rather a presentation of the more illustrative cases found in our investiga-
tions, Many of the response curves are not found in the CSTR studies and are
thus somewhat unexpected. The cases that are presented can be viewed, in our
opinion, as giving a much more complete picture of the interplay between the
instabilities in the steady states and the oscillatory dynamics that can arise
during operation of the reactor.

For a particular combination of the system parameters, we summarize the
multiplicity and stability of the steady states and oscillatory states on a
response curve with the Damkdhler number as the abscissa and the maximum temper-
ature of the steady state or periodic solution as the ordinate. The steady
state solution branches are computed by using Keller's modification of the Euler-
Newton procedure; the stability of these branches and the location of the bi-~
furcation points are determined by an eigenvalue analysis. The Hopf bifurcation
formulas (16-18) are then computed to give the direction of bifurcation and the
stability of the bifurcating periodic solutions. By using the asymptotic
formula (15) for the solution near the bifurcation point, we are able
to start tracing the stable oscillations as the DamkShler number is varied by
solving the full parabolic partial differential equations with PDECOL, a
general code based on the method of lines and collocation using B-splines [34].

The first example is illustrated in Figure 1 which corresponds to the

parameter values P =P =5, B= 0.5, y=25 B8-=23,5, and 60 =1
h m
“or all values of the Damkdhler number, D , the steady state is unique with
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exchanges instability at D = 0.262 and D = 0.295. At the value D = 0.295,

stable periodic solutions bifurcate to the left, while at D = 0.262, the solu~-
tions also bifurcate to the left but are not stable. PDECOL was used to trace
the stable oscillation from D = 0.295 down to D = 0,260 where the stable
osclllations cease to exist and the time-dependent solutions converge to the
stable steady state directly below. (We conjecture that the stable branch of
pericdic solutions connect with the unstable branch emanating from D = 0,262,)
The response curve dynamics associated with varying the Damkdhler number
can now be explained for the case depicted in Figure 1 . For D close to zero,
the reactor operates in stable state of low temperature and low conversion of
reactant A . As D 1is increased, the steady state remains stable and the
steady state temperature rises slowly until D passes through D = 0.262. A
jump occurs at this point in the temperature and concentration profiles into
the stable oscillation directly above. These oscillatory solutions remain until
D reaches D = 0,295 after which the reactor operates in a stable steady state.
To lower the conversion and temperature in the reactor, the DamkBhler number is
now decreased. At D = 0.295 a small stable oscillation in the temperature and
concentration profiles begins to appear. These oscillations continue until
D = 0.260 at which point the oscillations disappear through a jump back down
to the lower, stable steady state. Both of these jumps may be thought of as
ignition or extinction processes, respectively.

In Figure 2, { 1is decreased to 2.5 and a region of three steady states
appears, Exchanges of stability again occur at the Hopf points, and at the upper
point (L = ,1818), the behavior of the oscillation is similar to that of Figure
The stable periodic solution bifurcates to the left and its amplitude quickly in=-
creases. The orbit at the lower Hopf point (D = 0.165) bifurcates sharply upward
to the right and is stable. The continuation of these stable branches is quite

interesting. Attenpts to continue the larger amplitude periodic branch below

D = 0.172 failed with the time-dependent calculations converging to the lower
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amplitude periodic solutions regardless of the initial conditions. When tie ur~

steady-state calculations were started on the lower portion of the branch and

was increased above 0.172, the periodic orbit jumped to the upper solutinns., The

temperature profiles from the upper and lower periodic branches are presented i:.
Figures 3 and 4. The explanation of this seemingly new jump phenomena alorg %
periodic branch is the subject of current investigation. Since the respornce
curve in this case is similiar to the curve in Figure 5 , we forego a discussis
of the possible reactor dynamics for this case.

The dimensionless heat transfer coefficient is lowered to 2.35 in Figure
where 1-3-1-3-1 multiplicity arises. If D starts near zero and is increased,
the reactor temperature increases and remains in a stable steady state until the:
lower limit point is encountered at which point the temperature jumps intc the
much higher stable oscillation. This stable oscillation surrounds the unstable
steady states and grows steadily until a jump to an even higher stable oscilla-
tion occurs at about D = 0,159, The amplitude of the temperature oscillation
continues to grow, peaks out, and then rapidly decays to the steady state at
D = 0,166, The reactor can now be extinguished by decreasing the Damk®hler
number. The amplitude of the periodic orbits bifurcating at D = 0,166 grows
rapidly, peaks out, decays, jumps down, continues to decay, and then disappears
as the time-dependent solutions converdge to the lower, stable steady states
beginning at the lower turning point. (It should be pointed for this case that
the frequency of the oscillation decreases along the lower periodic branch as
D is decreased. The period of the oscillatory solution above the lower limit

point is approximately five times greater than the period of the orbit of the

Hopf point, D = 0,166.)
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The existence of five steady states for the reactor is shown in Figure 6 where

+ 1s decreased to 2 ., A Hopf point is located along the upper section of the
steady state branch, and an unstable, periodic orbit bifurcates to the right of
this point. While it is conceivable that a turning point could join this unstable
branch with a stable one, time-dependent calculations did not locate any stable
period solutions in this example. Furthermore, s {(which governs the asymptotic
change in frequency) is a large negative number and indicates the period of the
unstable solution becomes infinite near the Hopf point.

It is a straightforward procedure to trace the bifurcation diagrams for = = 1
and B = 0 to complete this series of examples. However, Hopf bifurcation does
not appear for these cases. For B8 = 1, the reactor exhibits five steady states
with an exchange of stability at each limit point and the well-known adiabatic
result of three steady states is found when £ = 0 .

In the last two figures, we show periodic solutions bifurcating from new
patterns of multiple steady states [24). Five steady states are illustrated in
Figure 7 (pe =1, B = 0,50, vy = 75, and R = 4), and we note the existence of
three Hopf points. The periodic solutions bifurcating to the right and to the
left from the intermediate steady states are unstable, because an exchange of
steady state stability does not accompany the bifurcation. The solutions at the
upper Hopf point bifurcate to the left, are stable, but become infinitely periodic
very near the bifurcation point.

The reactor model exhibits one, three, five, and seven steady states as
well as bifurcating periodic solutions in Figure 8 (Pe=l, B=0.50, y=125, and
5=4), Both of the periodic orbits bifurcate to the left and both become infinitely

periodic near the Hopf point, Only the periodic solutions bifurcating just to

the right of the upper quench point are stable.
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In Figures 6-8, the response curves become quite complex exhibiting

several steady states and oscillatory solutions. However, the dynamic capa-
bilities of the reactor in these examples are somewhat limited since many of
the states are unstable over a large range of the Damk8hler number., Ingition
is characterized by increasing D past a lower limit point so that the reactor
jumps from a stable, low temperature steady state to a stable, high temperature
steady state. The reactor is extinguished by decreasing D until a jump

occurs from an upper stable state (either a steady state or a periodic state

with small amplitude) down to a lower, stable steady state. In these last three
examples, jumps from lower steady states to large amplitude periodic solutions,
jumps between oscillatory states, and possible periodic reactor operation over

large regions of the DamkShler number are not possible.
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CONCLUSIONS

We have presented numerical bifurcation techni#ques which can determine
all possible steady and stable oscillatory solutions exhibited by distributed
parameter models. These techniques were applied to the nonadiabatic tubular
reactor and illustrated several types of steady state and oscillatory
phenomena. Many of the results were anticipated from studies of the CSTR,
but it is clear that all the possible phenomena exhibited by the tubular
reactor has not been uncovered. The effects of parameters such as the feed
temperature and flow velocity which could be used to control the reactor are
largely unknown. With the proper motivation and support, our technigues can
be used to solve these problems. Furthermore, because of their generality,
these numerical methods can also be applied to a broad array of models found
in combustion theory and mathematical biology as well as in chemical reactor

theory.
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NOTATION

cross-sectional area of the reactor, m

frequency factor, s

dimensionless heat of reaction, A4 H < /pC

concentration, mol/m3

inlet concentration, mol/m3

specific heat, J/mol°K

Damk&hler number, A e—YL/v

effective diffusivity, m2/s

activation energy, J/mol

heat of reaction, J/mol

effective thermal conductivity J/s m°K
reactor length, m

reactor perimeter, m

Peclet number for mass transfer vL/De
Peclet number for heat transfer pvaL/ke
universal gas constant

time, s

temperature, °K

inlet temperature, °K

dimensionless axial distance, x/L

heat transfer coefficient, J/m2 « s°K
velocity, m/s

axial distance, m

dimensionless concentration, c/c
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Greek symbols

8 dimensionless heat transfer coefficient, UPL/avcC
Y dimensionless actjvation energy, E:/R’I‘O p
& dimensionless temperature, 'I‘/To

. 3 r
P density kg/m ]
T dimensionless time, tv/L 3
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